1. Xe has a bigger atomic radius **OR** Xe has more shells  $\checkmark$ 

ALLOW Xe has more energy levels
ALLOW Xe has electrons in higher energy level
ALLOW Xe has electrons further from nucleus
IGNORE Xe has more orbitals OR more sub-shells
DO NOT ALLOW 'different shell' or 'new shell'

Xe has **more** shielding ✓

ALLOW More screening

There must be a clear comparison ie **more** shielding **OR** increased shielding.

i.e. **DO NOT ALLOW** Xe 'has shielding' **ALLOW** Xe has **more** electron repulsion from inner shells

The nuclear attraction decreases

**OR** Outermost electrons of Xe experience less attraction (to nucleus)

**OR** Increased shielding / distance outweighs the increased nuclear charge ✓ ORA throughout

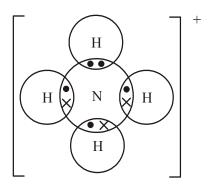
ALLOW Xe has less nuclear pull

IGNORE Xe has less effective nuclear charge

DO NOT ALLOW nuclear charge for nuclear attraction

[3]

2. 
$$3d^{10} 4s^2 4p^5 \checkmark$$


ALLOW  $4s^2 3d^{10} 4p^5$ ALLOW subscripts or  $3D^{10}$ ALLOW answers with  $1s^2 2s^2 2p^6 3s^2 3p^6$  appearing twice

[1]

3. (i) 
$$1s^22s^22p^63s^23p^6 \checkmark$$
*ALLOW subscripts*

1

(ii)



'Dot-and-cross' diagram to show four shared pairs of electrons one of which is a dative covalent bond (which must consist of the same symbols)  $\checkmark$ 

IGNORE inner shells

IGNORE '+' sign BUT DO NOT ALLOW a '-' sign.

Brackets and circles not required

1

(iii) tetrahedral ✓

109.5° ✓

*ALLOW* 109 – 110°

2

2

(iv) ions **OR** electrons cannot move in a solid ✓

ions can move **OR** are mobile in solution ✓

ALLOW ions can move in liquid

DO NOT ALLOW ions can move when molten

ALLOW 1 mark for:

'Ions can only move in solution'

[6]

4. the energy required to remove one electron ✓ from each atom in one mole ✓ of gaseous atoms ✓

ALLOW 3 marks for:

the energy required to remove one mole of electrons ✓

from one mole of atoms ✓

atoms in the gaseous state  $\checkmark$ 

If no definition, **ALLOW** one mark for the equation below, including state symbols.

 $X(g) \to X^{+}(g) + e^{-}/X(g) - e^{-} \to X^{+}(g)$ 

ALLOW e for electron

IGNORE state symbol for electron

[3]

- 5. (i)  $O^{+}(g) \rightarrow O^{2+}(g) + e^{-} \checkmark$ answer must have state symbols
  ALLOW e for electron
  ALLOW  $O^{+}(g) e^{-} \rightarrow O^{2+}(g)$ DO NOT ALLOW  $O^{+}(g) + e^{-} \rightarrow O^{2+}(g) + 2e^{-}$ IGNORE state symbol for electron
  - (ii) the O<sup>+</sup> ion, is smaller than the O atom OR
    the electron repulsion/shielding is smaller
    OR
    the proton: electron ratio in the 2+ ion is greater than in the 1+ ion ✓
    ALLOW the outer electrons in an O<sup>+</sup> ion are closer to the nucleus than an O atom

DO NOT ALLOW 'removed from next shell down'

1

1

1

1

[2]

[3]

- 6. (i) number of protons (in the nucleus) ✓

  ALLOW proton number

  ALLOW number of protons in an atom

  IGNORE reference to electrons
  - (ii)  $(1s^2)2s^22p^63s^23p^63d^24s^2$  ALLOW  $1s^2$  written twice ALLOW subscripts ALLOW  $4s^2$  before  $3d^{2+}$
  - (iii) Mn / manganese and d ✓

    ALLOW D

7. (i) atoms of the same element with different numbers of neutrons/different masses (1)

1

(ii) <sup>79</sup>Br 35 protons, 44 neutrons, 35 electrons (1) <sup>81</sup>Br 35 protons, 46 neutrons, 35 electrons (1)

2

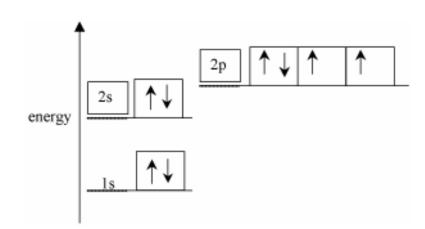
1

2

(iii)  $(1s^2)2s^22p^63s^23p^63d^{10}4s^24p^5$  (1)

[4]

**8.** (a)




1, 2 or 3 p orbitals are OK

(b) d orbital 2 ✓p sub-shell 6 ✓3rd shell 18 ✓

3

(i)



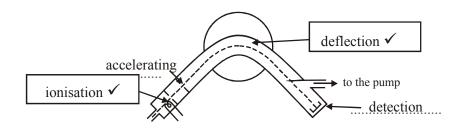
(ii) 2

2s and 2p labels ✓ Ignore any superscripted numbers. 8 electrons in correct levels with arrows correctly shown ✓

[7]

9. (i) Energy change when each atom in 1 mole ✓ of gaseous atoms ✓

loses an electron ✓ (to form 1 mole of gaseous 1+ ions).


3 2

2

- (ii) O<sup>2+</sup>(g) → O<sup>3+</sup>(g) + e<sup>-</sup> ✓✓
   1 mark for correct species; 1 mark for state symbols
   No charge required on electron.
   Ignore (g) on e
- (iii) Large difference between 6th and 7th IEs ✓
  marking a different shell (closer to nucleus) ✓
  allow 'inner shells'/new shell/full shell/first shell
  marking points independent.
  not sub-shell or orbital

[7]

**10.** (i)



|            | protons | neutrons | electrons |              |   |
|------------|---------|----------|-----------|--------------|---|
| $^{25}$ Mg | 12      | 13       | 12        | ✓            |   |
| $^{26}$ Mg | 12      | 14       | 12        | $\checkmark$ | 2 |

(ii)  $1s^22s^22p^63s^2$ 

 $24 \times 78.60/100 + 25 \times 10.11/100 + 26 \times 11.29/100$ 

1

2

3

(iii) = 24.33 ✓ (calc value: 24.3269. This scores one mark)
 24.32 with no working, award 1 mark only.
 24.3 with no working, no marks (Periodic Table value)

[5]

11. (a) Energy change when each atom in 1 mole of gaseous atoms (to form 1 mole of gaseous 1+ ions)

**loses an electron** ✓ (to form 1 mole of gaseous 1+ ions).

```
(b)
             From Li \rightarrow N, ionisation energy increases \checkmark
             number of protons/nuclear charge increases✓
             nuclear attraction increases / shell drawn in by increased
             nuclear charge/ atomic radius decreases✓
             across period, electrons added to same shell
                          Not same subshell
             From Be \rightarrow B, ionisation energy decreases
             for B, electron is removed from a p sub-shell/p
             orbital/different sub-shell✓
             which has a higher energy√
                                                                                                   7
                          watch for distinction between nuclear attraction and
                          nuclear charge in candidates' scripts.
                          Also watch for confusion between shell and subshell.
             Al✔
             Sharp rise in successive ionisation energy between 3rd and
             4th IE✓
             marking a change to a new or different shell / there are 3
             electrons in the outer shell
                                                                                                  3
                          mention of 'orbital' or 'sub-shell cancels 'shell mark' Each
                          marking point for Al is independent
             QoWC:
                          links together two pieces of information
                          correctly within two of the sections below:
                          1. General trend across period
                          2. Be to B
                          Successive ionisation energies✓
                                                                                                             [13]
             Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}
12.
      (i)
             Equation with correct charges and 1 electron lost \checkmark
             state symbols 🗸
             '-' not required on 'e'
                                                                                                  2
      (ii)
             same number of protons or same nuclear charge attracting
             less electrons/
             electron removed from an ion/
             less electron-electron repulsion (not less shielding)/
             ion is smaller✓
                                                                                                   1
            atomic radii of Sr > atomic radii of Ca/
             Sr has electrons in shell further from nucleus than Ca/
             Sr has electrons in a higher energy level/
             Sr has more shells <
             Therefore less attraction ✓
             Sr has more shielding than Ca ✓
             ('more' is essential)
                                                                                                   3
             increased nuclear charge is outweighed / despite increased nuclear
             charge .....by at least one of the factors above \checkmark
                                                                                                              [6]
```

13. 
$$1s^2 2s^2 2p^2 \checkmark$$

3. 18 28 2p V

14. (i) Energy change when each atom in 1 mole ✓ of gaseous atoms ✓ loses an electron ✓ (to form 1 mole of gaseous 1+ ions).

3

(ii) increasing nuclear charge/number of protons ✓ electrons experience greater attraction or *pull* / atomic radius decreases / electrons added to same shell /same or similar shielding ✓

2

2

(iii) In B, electron being removed is at a higher energy /
In Be, electron being removed is at a lower energy ✓
 An s electron is lost in Be AND a p electron is lost in B ✓

[7]

15.  $1s^22s^22p^63s^23p^63d^24s^2$ 

[1]

**16.** (i) First ✓ ionisation (energy) ✓

2

Ra(g)  $\rightarrow$  Ra<sup>+</sup>(g) + e<sup>-</sup>  $\checkmark$  1 mark for equation 1 mark for state symbols

'-' not required on 'e'

(ii) atomic radii of Ra > atomic radii of Ca/ Ra has electrons in shell further from nucleus than Ca/ Ra has more shells ✓ 2

Ra has **more** shielding than Ca **<** : '**more**' is essential

3

Ra electron held less tightly/less attraction on electron 🗸

[7]

17. (i)  $1s^22s^22p^63s^23p^6.....3d^{10}4s^24p^5 \checkmark \checkmark$ Award 1 mark for  $p^5$ .

2

1

(ii) Highest energy sub-shell/sub-shell/being filled is the p sub-shell/outer electrons are in a p (sub-shell/orbital/shell) ✓

[3]

| <b>18.</b> (a) | (a) | Energy change when each atom in 1 mole ✓                                                                              |   |     |  |  |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------|---|-----|--|--|
|                |     | of gaseous atoms 🗸                                                                                                    | 3 |     |  |  |
|                |     | loses an electron ✓ (to form 1 mole of gaseous 1+ ions).                                                              |   |     |  |  |
| (b             | (b) | increasing nuclear charge/number of protons ✓                                                                         |   |     |  |  |
|                |     | electrons experience greater attraction or <i>pull</i> /atomic radius decreases/electrons added to same shell/same or |   |     |  |  |
|                |     | similar shielding ✓                                                                                                   | 2 | [5] |  |  |